Dynamics of action potential head-tail interaction during reentry in cardiac tissue: ionic mechanisms.
نویسندگان
چکیده
In a sufficiently short reentry pathway, the excitation wave front (head) propagates into tissue that is partially refractory (tail) from the previous action potential (AP). We incorporate a detailed mathematical model of the ventricular myocyte into a one-dimensional closed pathway to investigate the effects of head-tail interaction and ion accumulation on the dynamics of reentry. The results were the following: 1) a high degree of head-tail interaction produces oscillations in several AP properties; 2) Ca(2+)-transient oscillations are in phase with AP duration oscillations and are often of greater magnitude; 3) as the wave front propagates around the pathway, AP properties undergo periodic spatial oscillations that produce complicated temporal oscillations at a single site; 4) depending on the degree of head-tail interaction, intracellular [Na(+)] accumulation during reentry either stabilizes or destabilizes reentry; and 5) elevated extracellular [K(+)] destabilizes reentry by prolonging the tail of postrepolarization refractoriness.
منابع مشابه
Unidirectional block and reentry of cardiac excitation: a model study.
A computer model of a ring-shaped, one-dimensional cardiac fiber was used for examination of responses of propagation to premature stimuli applied under different degrees of both cell-to-cell coupling and membrane excitability. Results demonstrated the importance of cellular uncoupling in the genesis of unidirectional block and reentry. Propagation of excitation itself created a certain degree ...
متن کاملDependence of phase-2 reentry and repolarization dispersion on epicardial and transmural ionic heterogeneity: a simulation study.
AIMS Phase-2 reentry (P2R) is a local arrhythmogenic phenomenon where electrotonic current propagates from a spike-and-dome action potential region to re-excite a loss-of-dome action potential region. While ionic heterogeneity has been shown to underlie P2R within the epicardium and has been hypothesized to occur transmurally, we are unaware of any study that has investigated the effects of com...
متن کاملDirection Des Bibliothèques the Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance Par
In a normal heartbeat, electrical activation starts from the SA node and propagates to both atria. It travels successively through the AV node, the His Bundle and finally the Purkinje fibers that distribute the excitation and contract ventricles. The electrical activation is formed by the unequal ionic distribution on both sides of the sarcoplasmic membrane, producing a difference of potential ...
متن کاملMultiple mechanisms of spiral wave breakup in a model of cardiac electrical activity.
It has become widely accepted that the most dangerous cardiac arrhythmias are due to reentrant waves, i.e., electrical wave(s) that recirculate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart's natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, have made it extr...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 279 4 شماره
صفحات -
تاریخ انتشار 2000